The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates.

نویسنده

  • D M Prescott
چکیده

Genes in the germline (micronuclear) genome of hypotrichous ciliates are interrupted by multiple, short, non-coding, AT-rich sequences called internal eliminated segments, or IESs. During conversion of a micronucleus to a somatic nucleus (macronucleus) after cell mating, all IESs are excised from the germline genes and the gene segments, called macronuclear-destined segments, or MDSs, are spliced. Excision of the approximately 150 000 IESs from a haploid germline genome in Oxytricha nova requires approximately 150 000 recombinant events. In three of 10 genes the MDSs are scrambled. During macronuclear development the MDSs are unscrambled, possibly by folding of the DNA to allow MDSs to ligate in the correct order. The nine MDSs in the actin I gene of O.nova are scrambled in the random order, 3-4-6-5-7-9-2-1-8, and MDS 2 is inverted. The 14 MDSs in the alphaTP gene of O.nova and Stylonychia mytilus are scrambled in the non-random order, 1-3-5-7-9-11-2-4-6-8-10-12-13-14. The 45 MDSs in the DNA pol alpha gene are non-randomly scrambled into an odd/even series, with an inversion of one-third of the gene. Additional IESs have been inserted into these three genes during evolution of Oxytricha trifallax, slightly modifying scrambling patterns. The non-random scrambled patterns in the alphaTP and DNA pol alpha genes are explained by multiple, simultaneous IES insertions. The randomly scrambled pattern in the actin I gene may arise from an initially non-randomly scrambled pattern by recombination among multiple IESs. Alternatively, IESs inserted sporadically (individually) in a non-scrambled configuration might subsequently recombine, converting a non-scrambled gene into a randomly scrambled one. IESs shift along a DNA molecule, most likely as a result of mutations at MDS/IES junctions. Shifting of IESs has the effect of 'transferring' nucleotides from one MDS to another, but does not change the overall sequence of nucleotides in the combined MDSs. In addition to shifting in position, IESs accumulate mutations at a high rate and increase and decrease in length within a species and during speciation. The phenomena of IESs and of MDS scrambling represent remarkable flexibility of the hypotrich genome, possibly reflecting a process of MDS shuffling that facilitates the evolution of genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution and assembly of an extremely scrambled gene.

The process of gene unscrambling in hypotrichous ciliates represents one of nature's ingenious solutions to the problem of gene assembly. With some essential genes scrambled in as many as 51 pieces, these ciliates rely on sequence and structural cues to rebuild their fragmented genes and genomes. Here we report the complex pattern of scrambling in the DNA polymerase alpha gene of Stylonychia le...

متن کامل

Universal Molecular Computation in Ciliates

How do cells and nature \compute"? They read and \rewrite" DNA all the time, by processes that modify sequences at the DNA or RNA level. In 1994, Adleman's elegant solution to a seven-city Directed Hamiltonian Path problem using DNA 1] launched the new eld of DNA computing, which in a few years has grown to international scope. However, unknown to this eld, ciliated protozoans of genus Oxytrich...

متن کامل

Evolution of IESs and scrambling in the actin I gene in hypotrichous ciliates.

Germ-line (micronuclear) genes in hypotrichous ciliates are interrupted by numerous, short, noncoding, AT-rich segments called internal eliminated segments, or IESs. IESs divide a gene into macronuclear destined segments, or MDSs. IESs are excised from micronuclear genes, and the MDSs are spliced when a micronuclear genome is processed into a macronuclear genome after cell mating. In the micron...

متن کامل

Reversible Molecular Computation in Ciliates

We prove that a reversible model for the guided homologous recom-binations that take place during gene rearrangement in ciliates has the computational power of a Turing machine, the accepted formal model of computation. This indicates that, in principle, these unicellular organisms may have the capacity to perform any computation carried out by an electronic computer. 1 Gene unscrambling as com...

متن کامل

RNA-directed epigenetic regulation of DNA rearrangements.

Ciliated protozoa undergo extensive DNA rearrangements, including DNA elimination, chromosome breakage and DNA unscrambling, when the germline micronucleus produces the new macronucleus during sexual reproduction. It has long been known that many of these events are epigenetically controlled by DNA sequences of the parental macronuclear genome. Recent studies in some model ciliates have reveale...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 1999